当前位置: 首页 > news >正文

南阳专业网站排名推广怎么做推广让别人主动加我

南阳专业网站排名推广,怎么做推广让别人主动加我,做网站专题需要什么软件,wordpress导航moban前段时间,来自 MIT 等机构的研究者提出了一种非常有潜力的替代方法 ——KAN。该方法在准确性和可解释性方面表现优于 MLP。而且,它能以非常少的参数量胜过以更大参数量运行的 MLP。 KAN的发布,引起了AI社区大量的关注与讨论,同时…

前段时间,来自 MIT 等机构的研究者提出了一种非常有潜力的替代方法 ——KAN。该方法在准确性和可解释性方面表现优于 MLP。而且,它能以非常少的参数量胜过以更大参数量运行的 MLP。

KAN的发布,引起了AI社区大量的关注与讨论,同时也伴随很大的争议。
而此类研究,又有了新的进展。

最近,来自新加坡国立大学的研究者提出了 Kolmogorov–Arnold Transformer(KAT),用 Kolmogorov-Arnold Network(KAN)层取代 MLP 层,以增强模型的表达能力和性能。

c2f9e6ac7f317eaf3ed75a035c2a461d.png

  • 论文标题:Kolmogorov–Arnold Transformer

  • 论文地址:https://arxiv.org/pdf/2409.10594

  • 项目地址:https://github.com/Adamdad/kat

KAN 原论文第一作者 Ziming Liu 也转发点赞了这项新研究。

dd4d6ba596e5e198dc6a3fdd9d37d2f2.png

将 KAN 集成到 Transformer 中并不是一件容易的事,尤其是在扩展时。具体来说,该研究确定了三个关键挑战:

(C1) 基函数。KAN 中使用的标准 B 样条(B-spline)函数并未针对现代硬件上的并行计算进行优化,导致推理速度较慢。

(C2) 参数和计算效率低下。KAN 需要每个输入输出对都有特定的函数,这使得计算量非常大。

(C3) 权重初始化。由于具有可学习的激活函数,KAN 中的权重初始化特别具有挑战性,这对于实现深度神经网络的收敛至关重要。

为了克服上述挑战,研究团队提出了三个关键解决方案:

(S1) 有理基础。该研究用有理函数替换 B 样条函数,以提高与现代 GPU 的兼容性。通过在 CUDA 中实现这一点,该研究实现了更快的计算。

(S2) Group KAN。通过一组神经元共享激活权重,以在不影响性能的情况下减少计算负载。

(S3) Variance-preserving 初始化。该研究仔细初始化激活权重,以确保跨层保持激活方差。

结合解决方案 S1-S3,该研究提出了一种新的 KAN 变体,称为 Group-Rational KAN (GR-KAN),以取代 Transformer 中的 MLP。

实验结果表明:GR-KAN 计算效率高、易于实现,并且可以无缝集成到视觉 transformer(ViT)中,取代 MLP 层以实现卓越的性能。此外,该研究的设计允许 KAT 从 ViT 模型加载预训练权重并继续训练以获得更好的结果。

该研究在一系列视觉任务中实证验证了 KAT,包括图像识别、目标检测和语义分割。结果表明,KAT 的性能优于传统的基于 MLP 的 transformer,在计算量相当的情况下实现了增强的性能。

66f0270001f4439d3151c665d5abc0f1.png

如图 1 所示,KAT-B 在 ImageNet-1K 上实现了 82.3% 的准确率,超过相同大小的 ViT 模型 3.1%。当使用 ViT 的预训练权重进行初始化时,准确率进一步提高到 82.7%。

不过,也有网友质疑道:「自从有论文比较了具有相同参数大小的 MLP 模型和 KAN 模型的性能后,我就对 KAN 持怀疑态度。可解释性似乎是唯一得到巨大提升的东西。」

24d779652acb920dfc10265964516841.png

对此,论文作者回应道:「的确,原始 KAN 在可解释性上做得很好,但不保证性能和效率。我们所做的就是修复这些 bug 并进行扩展。」

90a5efb358cdd51d53c17fca5a3e15dc.png

还有网友表示,这篇论文和其他人的想法一样,就是用 KAN 取代了 MLP,并质疑为什么作者在尝试一些已经很成熟和类似的东西,难道是在炒作 KAN?对此, 论文作者 Xingyi Yang 解释道,事实确实如此,但不是炒作,根据实验,简单地进行这种替换是行不通的,他们在努力将这个简单的想法变成可能的事情。

ff9fcbcad7febb59951e1587947d49f8.png

 Kolmogorov–Arnold Transformer (KAT)

作者表示,标准的 KAN 面临三大挑战,限制了其在大型深度神经网络中的应用。

它们分别是基函数的选择、冗余参数及其计算、初始化问题。这些设计选择使得原始版本的 KAN 是资源密集型的,难以应用于大规模模型。

本文对这些缺陷设计加以改进,以更好地适应现代 Transformer,从而允许用 KAN 替换 MLP 层。

源码地址及其详细讲解(免费)

https://space.bilibili.com/51422950?spm_id_from=333.1007.0.0

http://www.ritt.cn/news/28282.html

相关文章:

  • 什么网站做博客好友情链接可以帮助店铺提高浏览量
  • 网站开发专业就业指导河南网站建设哪家公司好
  • scratch网站开发杭州seo网
  • 长沙网站建设有限公司站群优化公司
  • 国外专门做旅行社的网站app推广联盟平台
  • 佛山 网站建设软件工程培训机构哪家好
  • 宾馆网站制作推广软文是什么
  • 做网站需要什么书竞价账户托管公司哪家好
  • 佛山企业名录黄页seo的定义
  • 网站多久备案一次吗怎么做游戏推广员
  • 胶南做网站seo怎么做优化工作
  • 网站怎么做双语种seo的概念
  • 深圳网站建设深圳网络公司东莞新闻头条新闻
  • 手机app开发网站新闻发布最新新闻
  • 手机网站设计图seo推广怎么入门
  • 天河公司网站建设公司vue seo优化
  • wordpress做动漫网站关键词seo深圳
  • 天津外贸营销型网站建设公司推广资源整合平台
  • 河南省建设厅网站师林峰网络推广推广培训
  • 线上平台推广是做什么的百度seo排名点击器app
  • 网站建设怎么申请域名什么文案容易上热门
  • 网站宽屏背景信息流优化师是做什么的
  • 广东省建设监理协会网站网站seo查询工具
  • 网站建设十佳网站视频播放代码
  • 天元建设集团有限公司注册资金整站优化全网营销
  • 响应式企业网站开发所用的平台站长之家查询工具
  • 怎么做服装外贸网站谷歌seo优化推广
  • 做购物网站支付需要怎么做宁波seo推广推荐
  • 怎么做网站教程html文本文档百度网站下载安装
  • 上海高端网页设计南宁seo怎么做优化团队