当前位置: 首页 > news >正文

河南省建设厅网站师林峰网络推广推广培训

河南省建设厅网站师林峰,网络推广推广培训,珠海做网站的公司有哪些,保险代理人做网站目标 背影 BP神经网络的原理 BP神经网络的定义 BP神经网络的基本结构 BP神经网络的神经元 BP神经网络的激活函数, BP神经网络的传递函数 数据 神经网络参数 基于BP神经网络 性别识别的MATLAB代码 效果图 结果分析 展望 背影 男人体内蛋白质比例大,女生…

目标
背影
BP神经网络的原理
BP神经网络的定义
BP神经网络的基本结构
BP神经网络的神经元
BP神经网络的激活函数,
BP神经网络的传递函数
数据
神经网络参数
基于BP神经网络 性别识别的MATLAB代码
效果图
结果分析
展望

背影

男人体内蛋白质比例大,女生脂肪比例大,而蛋白质密度比脂肪大,因此相同体积的男生比女生重。身高和体重和性别具有相关性,通过身高和体重,可以一定程度判断性别,本文用BP神经网络,以身高、体重为输入因子,以性别为输出,进行建模,训练测试,达到识别性别的目的

BP神经网络的原理

BP神经网络的定义

人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。

BP神经网络的基本结构

基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

bp神经网络的神经元

神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络由多个神经元构成,下图就是单个神经元的图1所示:
在这里插入图片描述
。。。。。。。。。。。。。。。。。。。。。。。。图1 ,神经元模型

bp神经网络激活函数及公式

在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/29edde342c3945939ad5945145ca8509.png在这里插入图片描述

BP神经网络传递函数及公式

图2是Sigmoid函数和双极S函数的图像,其中Sigmoid函数的图像区域是0到1,双极S函数的区间是正负1,归一化的时候要和传递函数的区域相对应,不然,可能效果不好
神经网络就是将许多个单一的神经元联结在一起,这样,一个神经元的输出就可以是另一个神经元的输入。
例如,下图就是一个简单的神经网络:在这里插入图片描述
在这里插入图片描述

基于BP神经网络的性别识别

基本模型通过

通过采集的男女生身高和体重,进行BP神经网络建模,以身高 和体重为输入变量,以性别为输出变量,进行训练和测试,实现BP神经网络的性别识别

数据

在这里插入图片描述

神经网络参数

三层神经网络,传递函数logsig , tansig,训练函数自适应动量因子梯度下降函数,学习率0.01,学习目标0.001,最大迭代次数100

MATLAB编程代码

clc
clear
close all
%% 读入数据
xlsfile=‘student.xls’;
[data,label]=getdata(xlsfile);

num = [data label];
m=200;
n = randperm(size(num,1));
input_train=num(n(1:m),1:2)‘;
%训练数据的输入数据
output_train=num(n(1:m),3)’;
%训练数据的输出数据
input_test=num(n(m+1:end),1:2)‘;
%测试数据的输入数据
output_test=num(n(m+1:end),3)’;
%测试数据的输出数据
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
%训练数据的输入数据的归一化
[outputn,outputps]=mapminmax(output_train);
%训练数据的输出数据的归一化de
%% BP网络训练
% %初始化网络结构
net=newff(minmax(inputn),[12,1],{‘logsig’,‘tansig’},‘trainlm’);
%net.trainParam.max_fail = 9;
net.trainParam.epochs=2000;
%最大迭代次数
net.trainParam.lr=0.01;
%学习率
net.trainParam.goal=0.0001;
%学习目标
%网络训练
net=train(net,inputn,outputn);
%% BP网络预测
%预测数据归一化

inputn_test=mapminmax(‘apply’,input_test,inputps);

%网络预测输出
an=sim(net,inputn_test);

%网络输出反归一化
BPoutput=round(mapminmax(‘reverse’,an,outputps));

%% 结果分析
figure(1)
plot(BPoutput(1,:),‘ro’)
%预测的结果数据画图-代表虚线,O代表圆圈标识,r代表红色
hold on
plot(output_test(1,:),‘k*’);
%期望数据,即真实的数据画图,-代表实现,就是代表的标识,k代表黑色
legend(‘预测输出’,‘期望输出’)%标签
title(‘BP神经网络测试效果’,‘fontsize’,12)%标题 字体大小为12
ylabel(‘类别’,‘fontsize’,12)%Y轴
xlabel(‘样本’,‘fontsize’,12)%X轴
set(gca,‘YTick’,1:2)
set(gca,‘YTickLabel’,{‘男’,‘女’})
ylim([0.8 2.2])

%预测误差
error=BPoutput-output_test;
figure
plot(error(1,:),‘-*’)
title(‘BP网络预测试误差’,‘fontsize’,12)
ylabel(‘误差’,‘fontsize’,12)
xlabel(‘样本’,‘fontsize’,12)

效果图

在这里插入图片描述

在这里插入图片描述

结果分析

从效果图上看,BP神经网络能很好的实现对性别的识别,BP神经网络是一种成熟的神经,相对于其他神经网络,拥有很多的训练函数,传递函数,可以调节的参数非常多,对各种问题都可以达到一个比较理想的效果,关键看如何调试参数,选择训练传递函数,有疑问或者其他应用方面,欢迎大家扫描下面的二维码

展望

针对神经网络供工具箱,可以自己写函数的代入并原本的工具箱函数,可以有很多种改进方法

http://www.ritt.cn/news/28260.html

相关文章:

  • 线上平台推广是做什么的百度seo排名点击器app
  • 网站建设怎么申请域名什么文案容易上热门
  • 网站宽屏背景信息流优化师是做什么的
  • 广东省建设监理协会网站网站seo查询工具
  • 网站建设十佳网站视频播放代码
  • 天元建设集团有限公司注册资金整站优化全网营销
  • 响应式企业网站开发所用的平台站长之家查询工具
  • 怎么做服装外贸网站谷歌seo优化推广
  • 做购物网站支付需要怎么做宁波seo推广推荐
  • 怎么做网站教程html文本文档百度网站下载安装
  • 上海高端网页设计南宁seo怎么做优化团队
  • 包头网站设计公司无锡seo关键词排名
  • 做58同城网站可靠么开通网站需要多少钱
  • 泰安集团网站建设武汉seo关键词排名
  • xampp可以做网站吗百度推广官网入口
  • 免费建设手机网站网站seo推广优化
  • 网站数据库安装教程最新全国疫情实时大数据
  • discuz 分类网站什么是软文营销
  • 网站开发 方案百度一下官网入口
  • 怎样看是静态网站还是动态网站 怎么操作如何去做网络推广
  • 做网站与网页有什么区别网站开发月薪多少钱
  • 网站系统怎么做谷歌搜索引擎免费
  • 怎么做网站写手宁波网络营销推广咨询报价
  • 前端怎么在猪八戒网站接单做百度网盘登录入口官网
  • 网站建设完成的时间微信广告投放平台
  • 做网站涉及个人隐私如何查看百度指数
  • 做卡贴的网站深圳百度搜索排名优化
  • 莱芜吧百度贴吧seo排名快速优化
  • 怎么建立一个个人网站如何申请网站域名流程
  • 要绑定税务网站办税员怎样做茂名seo顾问服务