当前位置: 首页 > news >正文

wordpress 支持中文用户名seo工具包括

wordpress 支持中文用户名,seo工具包括,如何做网站排名优化,网站建设 招标公告序言 蒙特卡罗( Monte Carlo \text{Monte Carlo} Monte Carlo)方法,也被称为计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战期间研制原子弹的“曼哈顿计划”。其核心思想是使用随机数&am…

序言

蒙特卡罗( Monte Carlo \text{Monte Carlo} Monte Carlo)方法,也被称为计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战期间研制原子弹的“曼哈顿计划”。其核心思想是使用随机数(或伪随机数)来解决一些复杂的计算问题,通过对概率模型进行随机模拟或统计抽样,用所得样本得到这些特征量的估计值,从而得到问题的近似解。

蒙特卡罗方法广泛应用于各个领域。在金融领域,它用于期权定价、风险评估等,可以估算金融资产的未来价格分布。在物理学和工程学领域,它用于模拟粒子运动、热传导、辐射传输等复杂物理过程。此外,在求解复杂的优化问题、计算高维度积分以及进行不确定性分析、敏感性分析或风险评估等方面,蒙特卡罗方法也发挥着重要作用。

采样和蒙特卡罗方法

  • 机器学习中的许多重要工具是基于从某种分布中采样以及用这些样本对目标量做一个蒙特卡罗估计。

为什么需要采样?

  • 我们希望从某个分布中采样存在许多理由。
    • 当我们需要以较小的代价近似许多项的和或某个积分时采样是一种很灵活的选择。
    • 有时候,我们使用它加速一些很费时却易于处理的和的估计,就像我们使用 minibatch \text{minibatch} minibatch对整个训练代价进行子采样一样。
    • 在其他情况下,我们需要近似一个难以处理的和或积分,例如估计一个无向模型中配分函数对数的梯度时。
    • 在许多其他情况下,抽样实际上是我们的目标,就像我们想训练一个可以从训练分布采样的模型。

蒙特卡罗采样的基础

  • 当无法精确计算和或积分(例如,和具有指数数量个项,且无法被精确简化)时,通常可以使用蒙特卡罗采样来近似它。这种想法把和或者积分视作某分布下的期望,然后通过估计对应的平均值来近似这个期望。令:
    s = ∑ x p ( x ) f ( x ) = E p [ f ( x ) ] s=\sum\limits_x p(\boldsymbol{x})f(\boldsymbol{x})=E_p[f(\text{x})] s=xp(x)f(x)=Ep[f(x)]
    — 公式1 \quad\textbf{---\footnotesize{公式1}} 公式1
    或者
    s = ∫ p ( x ) f ( x ) d x = E p [ f ( x ) ] s=\displaystyle \int p(\boldsymbol{x})f(\boldsymbol{x})d\boldsymbol{x}=E_p[f(\text{x})] s=p(x)f(x)dx=Ep[f(x)] — 公式2 \quad\textbf{---\footnotesize{公式2}} 公式2
  • 为我们所需要估计的和或者积分,写成期望的形式, p p p 是一个关于随机变量 x \textbf{x} x 的概率分布(求和时)或者概率密度函数(求积分时)。
  • 我们可以通过从 p p p 中采集 n n n 个样本 x ( 1 ) , … , x ( n ) \boldsymbol{x}^{(1)},\dots,\boldsymbol{x}^{(n)} x(1),,x(n) 来近似 s s s 并得到一个经验平均值: s ^ n = 1 n ∑ i = 1 n f ( x ( i ) ) \hat{s}_n=\displaystyle\frac{1}{n}\sum\limits_{i=1}^n f(\boldsymbol{x}^{(i)}) s^n=n1i=1nf(x(i)) — 公式3 \quad\textbf{---\footnotesize{公式3}} 公式3
  • 这种近似可以被证明拥有如下几个性质。首先很容易观察到 s ^ \hat{s} s^ 这个估计是无偏的,由于
    E [ s ^ n ] = 1 n ∑ i = 1 n E [ f ( x ( i ) ) ] = 1 n ∑ i = 1 n s = s \mathbb{E}[\hat{s}_n]=\displaystyle\frac{1}{n}\sum\limits_{i=1}^n\mathbb{E}[f(\boldsymbol{x}^{(i)})]=\frac{1}{n}\sum\limits_{i=1}^n s = s E[s^n]=n1i=1nE[f(x(i))]=n1i=1ns=s — 公式4 \quad\textbf{---\footnotesize{公式4}} 公式4
  • 此外,根据大数定理 ( Law of large number \text{Law of large number} Law of large number),如果样本 x ( i ) \boldsymbol{x}^{(i)} x(i) 独立且服从同一分布,那么其平均值几乎必然收敛到期望值,即: lim ⁡ n → ∞ s ^ n = s \lim\limits_{n\to\infty} \hat{s}_n=s nlims^n=s — 公式5 \quad\textbf{---\footnotesize{公式5}} 公式5
  • 只需要满足各个单项的方差,即 Var [ f ( x ( i ) ) ] \text{Var}[f(\boldsymbol{x}^{(i)})] Var[f(x(i))]有界。
    • 详细地说,我们考虑当 n n n增大时 s ^ n \hat{s}_n s^n的方差。
    • 只要满足 Var [ f ( x ( i ) ) ] < ∞ \text{Var}[f(\boldsymbol{x}^{(i)})]\lt\infty Var[f(x(i))]<,方差 Var [ s ^ n ] \text{Var}[\hat{s}_n] Var[s^n]就会减小并收敛到0:
      { Var [ s ^ n ] = 1 n 2 ∑ i = 1 n Var [ f ( x ) ] — 公式6 = Var [ f ( x ) ] n — 公式7 \begin{cases} \begin{aligned} \text{Var}[\hat{s}_n]&=\frac{1}{n^2}\sum\limits_{i=1}^n\text{Var}[f(\text{x})] &\quad\textbf{---\footnotesize{公式6}}\\ &=\frac{\text{Var}[f(\text{x})]}{n} &\quad\textbf{---\footnotesize{公式7}} \end{aligned} \end{cases} Var[s^n]=n21i=1nVar[f(x)]=nVar[f(x)]公式6公式7
  • 这个简单有用的结果启迪我们如何估计蒙特卡罗均值中的不确定性或者等价地说是蒙特卡罗估计的期望误差。我们计算了 f ( x ( i ) ) f(\boldsymbol{x}^{(i)}) f(x(i)) 的经验均值和方差,然后将估计的方差除以样本数 n n n 来得到 Var [ s ^ n ] \text{Var}[\hat{s}_n] Var[s^n] 的估计。 中心极限定理 ( central limit theorem \text{central limit theorem} central limit theorem)告诉我们 s ^ n \hat{s}_n s^n 的分布收敛到以 s s s 为均值以 Var [ f ( x ) ] n \frac{\text{Var}[f(\textbf{x})]}{n} nVar[f(x)]为方差的正态分布。这使得我们可以利用正态分布的累积密度函数来估计 s ^ n \hat{s}_n s^n 的置信区间。
  • 以上的所有结论都依赖于我们可以从基准分布 p ( x ) p(\textbf{x}) p(x) 中轻易的采样,但是这个假设并不是一直成立的。
    • 当我们无法从 p p p 中采样时,一个备选方案是用重要采样。
    • 一种更加通用的方式是使用一个趋近于目标分布估计的序列。这就是马尔可夫链蒙特卡罗方法。

总结

  • 蒙特卡罗方法是一种强大且灵活的数值计算方法,它基于随机数或伪随机数进行模拟和抽样,以逼近复杂的数学或物理问题的解。该方法具有处理高维度问题、对模型假设较少以及简单易实现等优点。然而,其收敛速度较慢,需要大量样本才能得到精确结果,计算成本较高。
  • 蒙特卡罗方法不仅在数学和物理领域有广泛应用,还渗透到金融、工程等多个学科。通过合理的模型构建和大量的随机样本生成,蒙特卡罗方法能够为我们提供问题近似解的可靠估计,为科学研究和技术应用提供了有力的支持。

往期内容回顾

蒙特卡罗方法 -引言篇

http://www.ritt.cn/news/27518.html

相关文章:

  • 怎么做微商的微网站企业文化
  • 大丰市市城乡建设局网站谷歌独立站
  • 设计网站推荐百度贴吧网络营销岗位描述的内容
  • 昆明做网站竞价海口做网站的公司
  • 页面设计心得体会公司seo是什么级别
  • 网站建设中如何设置外链接360营销推广
  • 备案后网站可以改名吗艾瑞指数
  • 如何用Axure做网站添加和删除佛山百度关键词seo外包
  • 江苏省建设斤网站百度推广广告公司
  • 怎么做网页背景百度关键词自然排名优化公司
  • php网站空间购买百度应用市场app下载
  • 网站公司上海微信代运营
  • 郑州seo网站推广武汉seo排名
  • 怎么开网店新手入门拼多多店铺刷神马seo排名首页排名
  • 湖南3合1网站建设市场调研的基本流程
  • html在线制作西安seo外包服务
  • 临清网站建设公司seo技术分享免费咨询
  • 公开课网站建设长春网站建设方案托管
  • 小程序自己免费制作seo网站推广公司
  • 固定ip做网站路由设置微信广告
  • 电商网站怎样做优化才最合理企业建站要多少钱
  • web动态网站开发电商运营培训
  • 自助建站系统有什么好处seo快速排名百度首页
  • 苏州保洁公司哪家好一点搜索引擎优化实训心得
  • 免费申请网站 主机 空间邢台网站网页设计
  • 做网店去哪个网站货源好关键词检测
  • 互联网网站备案磁力帝
  • 老师找学生做网站是什么心态知名网络营销推广
  • wordpress数据库压力seo网站外包公司
  • 广告公司网站建设长沙网站推广智投未来