美容院网站建设方案书网络营销策划方案怎么做
宣传一下算法提高课整理 <—
CSDN个人主页:更好的阅读体验 <—
题目传送门点这里
题目描述
战争时期,前线有 nnn 个哨所,每个哨所可能会与其他若干个哨所之间有通信联系。
信使负责在哨所之间传递信息,当然,这是要花费一定时间的(以天为单位)。
指挥部设在第一个哨所。
当指挥部下达一个命令后,指挥部就派出若干个信使向与指挥部相连的哨所送信。
当一个哨所接到信后,这个哨所内的信使们也以同样的方式向其他哨所送信。信在一个哨所内停留的时间可以忽略不计。
直至所有 nnn 个哨所全部接到命令后,送信才算成功。
因为准备充足,每个哨所内都安排了足够的信使(如果一个哨所与其他 k 个哨所有通信联系的话,这个哨所内至少会配备 kkk 个信使)。
现在总指挥请你编一个程序,计算出完成整个送信过程最短需要多少时间。
输入格式
第 111 行有两个整数 nnn 和 mmm,中间用 111 个空格隔开,分别表示有 nnn 个哨所和 mmm 条通信线路。
第 222 至 m+1m+1m+1 行:每行三个整数 i、j、ki、j、ki、j、k,中间用 111 个空格隔开,表示第 iii 个和第 jjj 个哨所之间存在 双向 通信线路,且这条线路要花费 kkk 天。
输出格式
一个整数,表示完成整个送信过程的最短时间。
如果不是所有的哨所都能收到信,就输出-1
。
数据范围
1≤n≤100,1≤n≤100,1≤n≤100,
1≤m≤200,1≤m≤200,1≤m≤200,
1≤k≤10001≤k≤10001≤k≤1000
样例输入
4 4
1 2 4
2 3 7
2 4 1
3 4 6
样例输出
11
题目化简:
给定一个 nnn 个点 mmm 条边的无向图,求编号为1的点与其他点之间最短距离的最大值。
思路
这道题因为数据范围极小,为了节约代码长度,可以采用Floyd
算法。
在求出任意两点间最短距离之后,遍历dist[1][i]
,求出最大值。
Dijkstra
算法与Floyd
类似,代码部分也给出了朴素Dijkstra和堆优化Dijkstra的代码。
算法时间复杂度
如果采用Floyd
算法,那么时间复杂度是O(n3)O(n^3)O(n3);
朴素Dijkstra算法:O(n2)O(n^2)O(n2), 但是代码较长;
堆优化Dijkstra算法:O(mlogn)O(m \log n)O(mlogn),同样的代码较长
AC Code
C++(Floyd)C++ (Floyd)C++(Floyd)
#include <iostream>
#include <cstring>
#include <algorithm>using namespace std;const int N = 110, inf = 1e9;int n, m;
int d[N][N];void init()
{for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )if (i == j) d[i][j] = 0;else d[i][j] = inf;
}void floyd()
{for (int k = 1; k <= n; k ++ )for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}int main()
{cin >> n >> m;init();while (m -- ){int a, b, c;cin >> a >> b >> c;d[a][b] = min(d[a][b], c);d[b][a] = min(d[b][a], c);}floyd();int res = 0;for (int i = 2; i <= n; i ++ )res = max(res, d[1][i]);if (res == inf) puts("-1");else printf("%d\n", res);return 0;
}
C++(朴素Dijkstra)C++ (朴素Dijkstra)C++(朴素Dijkstra)
#include <iostream>
#include <cstring>
#include <algorithm>using namespace std;const int N = 110;int n, m;
int g[N][N];
int dist[N];
bool st[N];int dijkstra()
{int res = 0;memset(dist, 0x3f, sizeof dist);dist[1] = 0;for (int i = 1; i <= n; i ++ ){int t = -1;for (int j = 1; j <= n; j ++ )if (!st[j] &&(t == -1 || dist[t] > dist[j]))t = j;st[t] = true;res = max(res, dist[t]);for (int j = 1; j <= n; j ++ )dist[j] = min(dist[j], dist[t] + g[t][j]);}return res == 0x3f3f3f3f ? -1 : res;
}
int main()
{memset(g, 0x3f, sizeof g);scanf("%d%d", &n, &m);while (m -- ){int a, b, c;scanf("%d%d%d", &a, &b, &c);g[a][b] = g[b][a] = min(g[a][b], c);}cout << dijkstra() << endl;return 0;
}
C++(堆优化Dijkstra)C++ (堆优化Dijkstra)C++(堆优化Dijkstra)
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>#define x first
#define y secondusing namespace std;typedef pair<int, int> PII;const int N = 110, M = N << 2;int n, m;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
bool st[N];void add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int dijkstra()
{int res = 0, cnt = 0;memset(dist, 0x3f, sizeof dist);dist[1] = 0;priority_queue<PII, vector<PII>, greater<>> heap;heap.push({0, 1});while (!heap.empty()){PII u = heap.top();heap.pop();if (st[u.y]) continue;st[u.y] = true;res = max(res, u.x);cnt ++ ;for (int i = h[u.y]; ~i; i = ne[i]){int j = e[i];if (dist[j] > dist[u.y] + w[i]){dist[j] = dist[u.y] + w[i];heap.push({dist[j], j});}}}return cnt == n ? res : -1;
}
int main()
{memset(h, -1, sizeof h);scanf("%d%d", &n, &m);while (m -- ){int a, b, c;scanf("%d%d%d", &a, &b, &c);add(a, b, c), add(b, a, c);}cout << dijkstra() << endl;return 0;
}
最后,如果觉得对您有帮助的话,点个赞再走吧!