当前位置: 首页 > news >正文

母婴用品商城网站模板全套下载分类达人介绍

母婴用品商城网站模板全套下载,分类达人介绍,学做蛋糕有哪些网站,做网站多少前详细解析三个训练调度文件:schedule_1x.py、schedule_2x.py、schedule_20e.py 在深度学习模型训练过程中,训练调度(Training Schedule)是至关重要的,它决定了模型训练过程中学习率(Learning Rate, LR&…

详细解析三个训练调度文件:schedule_1x.py、schedule_2x.py、schedule_20e.py

在深度学习模型训练过程中,训练调度(Training Schedule)是至关重要的,它决定了模型训练过程中学习率(Learning Rate, LR)的变化以及训练的总轮数(Epochs)。本文将详细解析三个训练调度文件:schedule_1x.pyschedule_2x.pyschedule_20e.py,这三个文件分别对应不同的训练时长和策略。

区别

这三个文件的主要区别在于训练的总轮数(max_epochs)和学习率调度策略(param_scheduler)中的milestones参数。max_epochs决定了训练的总轮数,而milestones参数则定义了在哪些epoch时学习率会进行衰减。

  • schedule_1x.py:训练总轮数为12轮,学习率在第8轮和第11轮时衰减。
  • schedule_2x.py:训练总轮数为24轮,学习率在第16轮和第22轮时衰减。
  • schedule_20e.py:训练总轮数为20轮,学习率在第16轮和第19轮时衰减。

schedule_1x.py 解析

# training schedule for 1x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')# learning rate
param_scheduler = [dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),dict(type='MultiStepLR',begin=0,end=12,by_epoch=True,milestones=[8, 11],gamma=0.1)
]# optimizer
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

训练配置(train_cfg

  • type: 'EpochBasedTrainLoop',表示训练循环是基于epoch的。
  • max_epochs: 12,训练的总轮数为12轮。
  • val_interval: 1,表示每1轮进行一次验证。

验证和测试配置(val_cfgtest_cfg

  • 两者都设置为默认的循环配置。

学习率调度(param_scheduler

  • 首先使用LinearLR,从0开始线性增加到start_factor=0.001,直到end=500迭代。
  • 然后使用MultiStepLR,在第8轮和第11轮时,学习率乘以gamma=0.1进行衰减。

优化器配置(optim_wrapper

  • 使用SGD作为优化器,初始学习率为0.02,动量为0.9,权重衰减为0.0001

自动缩放学习率(auto_scale_lr

  • enable: False,表示不自动缩放学习率。
  • base_batch_size: 16,基础批量大小。

schedule_2x.py 解析

# training schedule for 2x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')# learning rate
param_scheduler = [dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),dict(type='MultiStepLR',begin=0,end=24,by_epoch=True,milestones=[16, 22],gamma=0.1)
]# optimizer
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

训练配置(train_cfg

  • max_epochs: 24,训练的总轮数为24轮。

学习率调度(param_scheduler

  • 使用MultiStepLR,在第16轮和第22轮时,学习率乘以gamma=0.1进行衰减。

schedule_20e.py 解析

# training schedule for 20e
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')# learning rate
param_scheduler = [dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),dict(type='MultiStepLR',begin=0,end=20,by_epoch=True,milestones=[16, 19],gamma=0.1)
]# optimizer
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

训练配置(train_cfg

  • max_epochs: 20,训练的总轮数为20轮。

学习率调度(param_scheduler

  • 使用MultiStepLR,在第16轮和第19轮时,学习率乘以gamma=0.1进行衰减。

总结

这三个训练调度文件主要区别在于训练的总轮数和学习率衰减的时机。通过调整这些参数,可以控制模型的训练过程,以达到更好的训练效果。在实际应用中,根据模型的复杂度和训练数据的量,可以灵活选择或调整这些参数。

http://www.ritt.cn/news/26816.html

相关文章:

  • 赣州开发区网站建设10000个免费货源网站
  • 视频网站开发是什么seo优化技巧有哪些
  • 网站被模仿如何维权seo团队管理系统
  • 男女直接做的视频 视频网站网站推广论坛
  • 专做logo网站叫什么地方西地那非片说明书
  • 免费建立个人视频网站贴吧推广
  • 北京网站建设网站开发今天的三个新闻
  • 做视频网站把视频放在哪里找简单的网页设计
  • 建筑建设行业网站关键词的选取原则有
  • 截图京东图片做网站完美动力培训价格表
  • mysql导入wordpress郑州百度seo网站优化
  • 网站建设解决方案重要性深圳品牌策划公司
  • 长沙网站建设有限公司广告主资源哪里找
  • 做网站首页图片免费seo网站推广在线观看
  • 爱站工具想说超人下拉系统计算机培训机构
  • 国外免费搭建网站源码网站建设主要推广方式
  • 宁波网站建设托管唐山seo推广公司
  • WordPress滑动验证码插件求职seo服务
  • 查网站域名备案查询短视频运营方案策划书
  • 自动城市定位装修网站建设网络销售平台排名
  • 做网站前台模型要做什么呢创建网页
  • 邗江区疫情最新消息西安百度seo推广
  • 做网站合同最新军事新闻 今日 最新消息
  • 南京网站制作步骤百度热搜榜排名
  • 广东和深圳的关系兰州seo网站建设
  • 溧阳网站定制百度号码认证申诉平台
  • 广州房地产网站建设方案成人就业技术培训机构
  • 链接优化方法杭州搜索引擎优化公司
  • html5个人博客网站模板微信上怎么做广告推广
  • 网站排名软件 利搜传统营销与网络营销的整合方法