政府网站建设个人先进推荐材料苏州旺道seo
文章目录
目录
前言
一、栈
1.栈的概念及结构
2.栈的实现
入栈
出栈
获取栈顶元素
获取栈中有效元素个数
检测栈是否为空,如果为空返回非零结果,如果不为空返回0
销毁栈
二、队列
1.队列的概念及结构
2.队列的实现
初始化队列
队尾入队列
队头出队列
获取队列队头元素
获取队列队尾元素
获取队列中有效元素个数
检测队列是否为空,如果为空返回非零结果,如果非空返回0
销毁队列
最后
前言
本篇文章内容讲述了栈和队列的概念结构、分类与函数声明部分,以及对于各个函数的实现。
以下内容仅供参考,欢迎各位大佬批评指正呦~
提示:以下是本篇文章正文内容,下面案例可供参考
一、栈
1.栈的概念及结构
栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端 称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。 压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。 出栈:栈的删除操作叫做出栈。出数据也在栈顶。
2.栈的实现
栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的 代价比较小。
// 下面是定长的静态栈的结构,实际中一般不实用,所以我们主要实现下面的支持动态增长的栈
typedef int STDataType;
#define N 10
typedef struct Stack
{STDataType a[N];int _top; // 栈顶
}ST;// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack
{STDataType* a;int top; // 栈顶int capacity; // 容量
}ST;// 初始化栈
void StackInit(ST* ps); // 入栈
void StackPush(ST* ps, STDataType x); // 出栈
void StackPop(ST* ps); // 获取栈顶元素
STDataType StackTop(ST* ps); // 获取栈中有效元素个数
int StackSize(ST* ps); // 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
int StackEmpty(ST* ps); // 销毁栈
void StackDestroy(ST* ps);
初始化栈
void StackInit(ST* ps) {assert(ps);ps->a = (STDatatype)malloc(sizeof(STDatatype) * 4);if (ps->a == NULL){perror("malloc fail");exit(-1);}ps->top = 0;ps->capacity = 4; }
入栈
void StackPush(ST* ps, STDatatype x) {assert(ps);if (ps->top == ps->capacity){STDatatype* tmp = (STDatatype*)realloc(ps->a,ps->capacity*2*sizeof(STDatatype));if (tmp == NULL){perror("realloc fail");exit(-1);}ps->a = tmp;ps->capacity *= 2;}ps->a[ps->top] = x;ps->top++;}
出栈
void StackPop(ST* ps) {assert(ps);assert(!StackEmpty(ps));ps->top--; }
获取栈顶元素
STDatatype StackTop(ST* ps) {assert(ps);assert(!StackEmpty(ps));return ps->a[ps->top - 1]; }
获取栈中有效元素个数
int StackSize(ST* ps) {assert(ps);return ps->top; }
检测栈是否为空,如果为空返回非零结果,如果不为空返回0
bool StackEmpty(ST* ps) {assert(ps);return ps->top == 0; }
销毁栈
void StackDestory(ST* ps) {assert(ps);free(ps->a);ps->a = NULL;ps->top = ps->capacity = 0; }
二、队列
1.队列的概念及结构
队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出 FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头
2.队列的实现
队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数 组头上出数据,效率会比较低。
// 链式结构:表示队列
typedef int QDataType;
typedef struct QueueNode
{QDataType data;struct QueueNode* next;
}QNode;// 队列的结构
typedef struct Queue
{ QNode* head;QNode* tail;int size;
}Queue; // 初始化队列
void QueueInit(Queue* pq); // 队尾入队列
void QueuePush(Queue* pq, QDataType data); // 队头出队列
void QueuePop(Queue* pq); // 获取队列头部元素
QDataType QueueFront(Queue* pq); // 获取队列队尾元素
QDataType QueueBack(Queue* pq); // 获取队列中有效元素个数
int QueueSize(Queue* pq); // 检测队列是否为空,如果为空返回非零结果,如果非空返回0
int QueueEmpty(Queue* pq); // 销毁队列
void QueueDestroy(Queue* pq);
初始化队列
void QueueInit(Queue* pq) {assert(pq);pq->head = NULL;pq->tail = NULL;pq->size = 0; }
队尾入队列
void QueuePush(Queue* pq, QDataType x) {assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->data = x;newnode->next = NULL;if (pq->tail == NULL){pq->head = pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++; }
队头出队列
void QueuePop(Queue* pq) {assert(pq);assert(!QueueEmpty(pq));if (pq->head->next == NULL){free(pq->head);pq->head = pq->tail = NULL;}else{QNode* del = pq->head;pq->head = pq->head->next;free(del);}pq->size--; }
获取队列队头元素
QDataType QueueFront(Queue* pq) {assert(pq);assert(!QueueEmpty(pq));return pq->head->data; }
获取队列队尾元素
QDataType QueueBack(Queue* pq) {assert(pq);assert(!QueueEmpty(pq));return pq->tail->data; }
获取队列中有效元素个数
int QueueSize(Queue* pq) {assert(pq);return pq->size; }
检测队列是否为空,如果为空返回非零结果,如果非空返回0
bool QueueEmpty(Queue* pq) {assert(pq);return pq->head == NULL && pq->tail == NULL; }
销毁队列
void QueueDestroy(Queue* pq) {assert(pq);QNode* cur = pq->head;while (cur){QNode* del = cur;cur = cur->next;free(del);//del = NULL;}pq->head = pq->tail = NULL;pq->size = 0; }
最后
快乐的时光总是短暂的,以上就是今天要讲的内容,本文介绍了小赵同志对算法与数据结构(C语言)的栈和队列的初步认知以及实现。欢迎家人们批评指正。小赵同志继续更新,不断学习的动力是宝子们一键三连的支持呀~